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LETTER TO THE EDITOR 

On the ballistic conductance of small contacts and its 
resonant structure: trumpet effect washes out resonant 
structure 

L Escapa and N Garcia 
Departamento de Fisica de la Materia Condensada, C-111, Universidad Autonoma de 
Madrid, Cantoblanco, 28049-Madrid, Spain 

Received 5 January 1989 

Abstract. Recent experimental results in ZD electron gas GaAslGaAlAs structures seem to 
show that the ballistic electron conductance of small contacts, to a good approximation, is 
‘quantised’. In this Letter we present calculations for general geometries of the contacts 
which describe the experimental data reasonably well. Our calculations show resonant 
scattering superimposed on the quantised conductance for some particular geometries. In 
general the resonances tend to be washed out and most probably in experimental geometries 
the resonances should not be present. 

In recent work on high-mobility ZDEG in GaAs-GaAlAs heterostructures [l, 21, the 
conductance ( G )  of ballistic point contacts has been shown to exhibit a ‘quantised’ 
behaviour as a function of the width of the contact, W (see figure 1). The resistance/ 
conductance of these contacts was studied theoretically in [3], which showed that in the 
classical limit, when the electrons going through the contact are treated like bullets and 
both the length of the contact, I ,  and the width, W, are smaller than the inelastic electron 
mean free path, the value of G is 

G=2GoW (1) 
where Go = l /Ro with R,  = 2h/e2 - 12,900 Q being the quantum of resistance, and W 
is defined in units of the Fermi wavelength, A .  However, the calculations in [3] did not 
introduce quantum interferences that should be present when the electrons diffract with 
smallcontacts, i.e. Wof afewwavelengths. Quantumcalculationsof theelasticresistance 
of small scanning tunnelling microscopy (STM) point contacts discussed in a talk on 
oscillatory behaviour in the quantum elastic resistance of small contacts [4] clearly show 
that the resistances presented quantum oscillations or plateaus as a function of the 
contact width. These calculations were done for contacts of short length I < A/2 and the 
shapes of the oscillations in the conductance depended also on the given geometrical 
shape of the contact [4,5]. 

In this work we present quantum exact calculations for the ballistic conductance of 
small contacts of general geometry. In order to be more explicit, the inset of figure 1 
shows the geometry of the contact and the reservoirs of electrons of Fermi wavelengths 
A I ,  A2 and A, describing the reservoirs and the contact respectively (in our case A I  = A 2  = 
A,, i.e. the 2DEG has the same Fermi energy in all 2D space). The reservoirs have width 
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Figure 1.  The inset describes the geometry of the contact and the reservoirs. Notice in our 
geometry the two trumpets connecting the reservoirs and the contacts of width W .  These 
trumpets are defined by I , ,  12, Q, and q2.  Curve A: oscillatory character of the conductance 
versus W for I ,  = 0.001 and no trumpets; curves B and C: the same as in curve A but for I ,  = 
2 and 5 respectively. In these cases well defined steps and plateaus develop as well as a 
superimposed resonant structure. In all cases L = 10 and no appreciable changes were 
observed for larger values of L. The left-hand and lower axis labels apply to curve A, and 
the rigid-hand and upper axis labels to curves B and C. 

6 

5 

L >> Wand the length of the contact is 1 = ll + I, + 1 2 ,  where ll and l2 describe the length 
of the trumpets ending the contact with angles v, and q2.  Also, I ,  is the length where the 
contact has constant width W. The contacts are defined by applying a negative voltage 
to the gate described by the shaded region that creates an infinite large repulsive potential 
to the electrons in the ~ D E G .  

We have performed quantum mechanical calculations to obtain the values of G as a 
function of W for different values of the parameters of the inset in figure 1. The results 
are obtained by solving Schrodinger’s equation with the boundaries defined by the 
contact constriction and the reservoir walls by a similar method to the one used in [6] to 
calculate quantum elastic reinstances of interfaces. In this case because the reservoirs 
have dimension L we have expanded the solution in the reservoirs into series of sines 
and cosines vanishing at the walls of the reservoirs. The solution in the constriction 
(l, ,  W) is also expanded in sine and cosine owing to the characteristic modes of the width 
W. At the trumpets, i.e. the opening regions of the contacts, defined by 11, 1 2 ,  q1 and 
cp2, the solution is expanded into sine and cosine linear combinations of the reservoir 1 
and 2 respectively. This solution in the trumpets is within the Rayleigh assumption [7] 
and the good results should be checked against the unitary rules in the reflected and 
transmitted intensity through the contact. The solution in all space is then obtained by 
matching the wavefunction reservoir 1, the constriction and reservoir 2, and at the same 
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time this wavefunction has to vanish at the boundaries defined by the contact. The 
conductance is obtained by 

G = Go Ti 
i 

where Ti is the total transmitivity for the electron i impinging the contact and going 
through it. Also 

Ti = T..  
, 11 

I 
(3) 

where TLl is the transmittivity carried out by the j-component of the propagating wave 
of the transmitted electron (see [6]). The expansion of the wavefunction has a finite 
number of propagating terms Np and an infinite number of evanescent waves that has to 
be truncated to Ne terms, and the convergence has to be studied as a function of these 
evanescent terms that play a very important role in the convergent solutions. The index 
i in equation (2) runs over all states at the Fermi level. 

In what follows all our parameters are given in units of A = 1. Figure 1 shows results 
for three characteristic cases. In all of them we have assumed that the contact is defined 
by a perfect tube of constant width ( 1 1  = l2 = 0). Figure 1, curve A, shows the case of 
1, = 0.001, for which only very weak and small oscillations are observed of period 0.5 
and the average slope of the curve is 2, in agreement with formula (1); i.e. for a pure flat 
contact the quantisation is difficult to define. In figure 1 , curve B, we present calculations 
for 1, = 2 and we can now observe plateaus in the conductance at integral values of 
G with periods of 0.5; however, we also notice the apparition of a resonant structure 
superimposed on the plateaus. This resonant structure appears only when the value of 
1, is larger than a critical value of about 0.7 in agreement with our previous results [4,5] 
where we did not find resonances when 1, < 0.5. These resonances are well understood 
in terms of the resonant character of the transmittivity of a step of length 1, and height 
V [8]; here, the height of the step is the energy of the different propagating modes n in 
theconstrictionof energy (h2/2m*) ( ~ J T / W ) ~ ,  m* beingthe effectivemassof theelectron. 
Figure 1, curve C, shows similar calculations to those of figure 1, curve B, but with 1, = 
5 ,  and certainly we observe that the number of resonances increases. The jumps or 
‘quantised’ steps in the conductance can also be understood in terms of the number of 
propagating or conducting modes owing to the contact that are defined by int(2W). The 
conductance of wires and tubes has been clearly discussed in [9]. 

However, the above-calculated cases show resonances that are quite fictitious, 
because for real-life devices the width of the contact should change smoothly in the 
reservoir regions because the depletion of electrons by applying the gate voltage should 
vary slowly. In other words the real contacts should show trumpets that we simulate by 
the angles q and q in the inset of figure 1. 

In figure 2 we analyse the behaviour of the resonances in figure 1, curve B for 1, = 2 
when we add trumpets of different length, and in order to keep the parameters under 
control we take in all cases q = q = 30”. Figure 2, curve A, represents an augmentation 
of figure 1, curve B, to be compared with the following cases. Figure 2, curve B, shows 
the resonant structure for a trumpet connecting reservoir 1 and length l1 = 0.5; figure 2, 
curve C, presents the resonant structure with two trumpets of length l I  = l 2  = 0.5. It can 
be observed that the resonant structure remains practically unchanged for trumpet 
lengths smaller than 0.5. However, this is not the case when the trumpets are longer. 
For l1  = l 2  = 0.75 and l I  = l 2  = 1 corresponding to figure 2, curves D and E, the strong 
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Figure 2. Curve A: conductance versus W for the case of figure 1, curve B; curves B,  C, D 
and E: the same calculations as for curve A but with introduction of trumpets in the geometry 
of inset 1, q i  = q Z  = 30". For curve B,  l i  = 0.5 and l2 = 0; curve C,  I ,  = l2 = 0.5; curve D, 
I, = I ,  = 0.75; curve E, I ,  = l2  = 1. Notice the trumpet effect is to wash out the resonant 
structure; compare curve A with curves D and E. 

resonance together with the weak one are clearly washed out and tend to disappear in 
such a way that the trend is to smooth out the jump in the conductance step. We have 
tried to increase the length of the trumpets for I I  and l2 larger than 1, but our results do 
not converge. Physically it is very easy to understand this disappearing behaviour of the 
resonance for long trumpets (trumpet effect) and it is simply related to the behaviour of 
the transmitivity of a particle through a smooth step. Now the step in the potential V 
mentioned above takes place in a wavelength distance and the resonant structure in the 
transmitivity of the particle disappears [SI. 

In conclusion, we have calculated the elastic ballistic conductance/resistance of 
electrons through small contacts. Our results show that for short contacts the con- 
ductance shows a periodic oscillatory behaviour, that transforms into plateaus and steps 
of height e2/2h when the length of the contact is of the order of 1,. The plateaus also show 
a superimposed resonant structure for the cases in which the interfaces between the 
contact and the reservoirs have sharp edges. However, these resonances disappear for 
general geometries by introducing what we have called the trumpet effect. In our 
opinion, experimental results should not show resonances, because the electron deple- 
tion between the constriction defining the contact and the reservoir should vary slowly 
and in a Fermi wavelength. 

We acknowledge J J Saenz for valuable discussions. 
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